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The multiscale formulation of large eddy simulation: Decay of homogeneous
isotropic turbulence
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The variational multiscale method is applied to the large eddy simulation~LES! of homogeneous,
isotropic flows and compared with the classical Smagorinsky model, the dynamic Smagorinsky
model, and direct numerical simulation~DNS! data. Overall, the multiscale method is in better
agreement with the DNS data than both the Smagorinsky model and the dynamic Smagorinsky
model. The results are somewhat remarkable when one realizes that the multiscale method is almost
identical to the Smagorinsky model~the least accurate model!! except for removal of the eddy
viscosity from a very small percentage of the lowest modes. ©2001 American Institute of Physics.
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I. INTRODUCTION

Large eddy simulation~LES! has proven to be a valuabl
technique for the calculation of turbulent flows. The philos
phy of LES consists of resolving large-scale flow featu
and modeling subgrid-scale stresses, which represent th
fect of missing, unresolved scales on resolved scales wi
the filtered Navier–Stokes equations. The Smagorinsky e
viscosity model1 has played a dominant role in LES over th
years. The classical Smagorinsky model entails definition
a constant, a length scale and a time scale.A priori analyses
to determine the constant and length scale have been
formed by Lilly.2–4 Lilly employs the Kolmogorov energy
spectrum and assumptions relating mesh scales to the cu
wave number of the discretization. Experience has reve
that the constant determined by this process is not suit
for all flows. In addition, many other shortcomings of th
Smagorinsky model have been identified, such as incor
asymptotics in wall-bounded flows, inability to accomm
date backscatter, excessive dissipation in the presenc
large coherent structures, incorrect growth rate of pertur
tions in transition, etc.~see, e.g., Germanoet al.5 and
Piomelli6!. These have prompted numerous efforts to i
prove upon the Smagorinsky model. A major advance to
place with the development of the dynamic Smagorins
model5,7,8 in which the Smagorinsky constant is replac
with a function of space and time which is self-adaptive
determined along with the flow solution. The dynamic Sm
gorinsky model has led to improved results in almost
cases~see Piomelli6 for a recent review and assessment
the state-of-the-art!. Nevertheless, many efforts have be
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devoted to further improvement. For example, we may m
tion ‘‘mixed-models’’9 and ‘‘scale-similar models.’’10

A new philosophy of LES was espoused in Hugh
et al.,11 where it was argued that many shortcomings
Smagorinsky-based approaches were associated with
inability to successfully differentiate between large and sm
scales. To this end, a multiscale method was adopted to
form scale-separationab initio. The idea of using multiscale
approaches in turbulence is not new. Temam and his
leagues have been pursuing this strategy for a numbe
years~see Dubois, Jauberteau, and Temam12–14!. Our work
began in Hughes15 and Hughes and Stewart16 where the ini-
tial focus was more on explaining and refining certa
‘‘good’’ numerical methods than on turbulence modelin
The inextricable relationship between modeling and go
numerical methods was emphasized in Hugheset al.17 The
main tenets of our approach are summarized as follows:

~i! Variational projection is used to differentiate scales
~ii ! A priori scale separation is preferred to attempts aa

posteriori scale separation. This enables surgic
modeling of unresolved, high wave-number pheno
ena rather than all wave numbers, as in contempor
LES.

~iii ! Modeling is confined to the small-scale equation
preference to modeling within the large-scale equ
tion.

It can be argued that, even with relatively crude mod
ing, such as using a constant-coefficient Smagorinsky mo
in the small-scale equation, many of the shortcomings of
traditional LES models are obviated. These points w
made in Hugheset al.11 but no numerical results were pre
sented supporting them. In this work we take a first step
providing numerical verification of our ideas. Here, we e
amine homogeneous, isotropic flows using a spec

e:
-
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506 Phys. Fluids, Vol. 13, No. 2, February 2001 Hughes et al.
method. The variational multiscale method has a transpa
interpretation in the context of spectral methods.

We note in passing that our original presentation of
variational multiscale methods for LES~Ref. 11! was con-
cerned with physical, rather than spectral, space. Therein
described variational/finite element formulations using hi
archical bases and ‘‘bubbles,’’ which are useful techniqu
for developing multiscale procedures. Jansen18 has imple-
mented the methods with success in a stabilized finite
ment code employing hierarchical bases. We believe sim
ideas can also be developed for finite difference and fi
volume codes by exploiting technology used in multig
solvers, in particular, agglomeration operators which can
used to extract large-scale subspaces. This approach is b
pursued by Farhat.19 It could also be used in finite elemen
codes.

The remainder of the paper is summarized as follows
Sec. II we describe the spectral variational multisc
method. In Sec. III, we present numerical results for a
mogeneous, isotropic Euler flow, and for the decay of hom
geneous, isotropic turbulence with initial Taylor microsca
Reynolds number of about 90. The methods compared
the standard Smagorinsky model, the dynamic Smagorin
model, and two variants of the multiscale method. All resu
are benchmarked against direct numerical simulation~DNS!
data. The multiscale results are in better agreement with
DNS data than both the Smagorinsky and dynamic Sma
insky models. Furthermore, we argue that the multiscale
sults are not optimized in any way. Conclusions are p
sented in Sec. IV.

II. THEORY

The variational multiscale method for LES was intr
duced by Hugheset al.11 Here we will provide a brief de-
scription specialized for the case of a spectral method. F
comprehensive presentation of spectral methods, see Ca
et al.20

We consider the incompressible, isothermal, Navie
Stokes equations on the spatial domainV5@0,2p#3,R3.
We assume periodic boundary conditions in all three spa
directions. In this case we have

]u

]t
1¹•~u^ u!1¹p5nDu in Q, ~1!

¹•u50 in Q, ~2!

u~x,0!5u0~x! on V, ~3!

where u is the velocity vector,p is the pressure,n is the
kinematic viscosity,Q5V3]0,T@ , T defines the time inter-
val of interest, andu0 is the given initial velocity, assume
divergence free. Let the boundary ofV be denoted by]V. It
is comprised of six faces,G j (0), G j (2p), j 51, 2, 3, where

G j~c!5$xP]Vuxj5c%. ~4!

The periodic boundary conditions may be expressed as

u~y,t !5u~x,t !, xPG j~0!,
~5!y5x12pejPG j~2p!, tP]0,T@ ,
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whereej is the unit Cartesian basis vector in thexj direction.
The Fourier series representation of the solution is

u~x,t !5(
k

ûk~ t !eik•x, ~6!

p~x,t !5(
k

p̂k~ t !eik•x, ~7!

wherek5(k1 ,k2 ,k3) is the wave-number vector andûk and
p̂k are the Fourier coefficients ofu andp, respectively. The
Fourier versions of~1! and ~2! are, respectively,

S d

dt
1nuku2D ûk52 ikp̂k2 ik•~u^ u!̂k , ~8!

ik•ûk50. ~9!

The Fourier–Galerkin approximation truncates the sums,~6!
and ~7!, such that2n/2<kj<1n/221, j 51,2,3. This cor-
responds to a direct numerical simulation~DNS! with a grid
of n3 cells. Note that, modes for whichkj52n/2, j
51,2,3, are omitted for reasons concerning commonly u
FFT’s ~see discussion on p. 78 of Canutoet al.20!. In prac-
tice, one does not use the pressure. The velocity is sim
projected on its divergence-free part employing~9!.

A. Smagorinsky model

As a point of reference for describing the multisca
models, we will first present the Smagorinsky model. In t
case the subgrid-scale stress is modeled by

T52nT¹su, ~10!

where

nT5~CSD!2u¹suu ~11!

in which CS is the so-called Smagorinsky constant,D is a
length scale,¹su denotes the symmetric gradient, viz.,

¹su5 1
2~¹u1~¹u!T! ~12!

and

u¹suu5~2¹su•¹su!1/2. ~13!

The length scaleD is taken to be the mesh size. The model
counterpart of~8! is

S d

dt
1nuku2D ûk52 ikp̂k2 ik•@~u^ u!̂k2T̂k#. ~14!

B. Multiscale formulation

In the multiscale formulation we decompose the solut
into large-scale and small-scale components, viz.,

u5ū1u8, ~15!

p5 p̄1p8, ~16!

where

ū~x,t !5 (
uku,n̄/2

ûk~ t !eik•x, ~17!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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507Phys. Fluids, Vol. 13, No. 2, February 2001 The multiscale formulation of large eddy simulation
p̄~x,t !5 (
uku,n̄/2

p̂k~ t !eik•x, ~18!

u8~x,t !5 (
uku>n̄/2

ûk~ t !eik•x, ~19!

p8~x,t !5 (
uku>n̄/2

p̂k~ t !eik•x, ~20!

uku5~k1
21k2

21k3
2!1/2, ~21!

and n̄,n8. The sums in~19! and ~20! are truncated by
2n8/2<kj<n8/221, j 51, 2, 3, wheren8 defines the LES
grid.

Modeling is confined to the small scales, i.e., let

R52nT8¹su8, ~22!

where there are two choices under consideration fornT8 ,

nT85~CS8D8!2u¹su8u ~23!

and

nT85~CS8D8!2u¹sūu. ~24!

We refer to~23! as ‘‘small–small’’ and to~24! as ‘‘large–
small.’’ The length scaleD8 is taken to be the mesh size. Th
equations in Fourier space are

S d

dt
1nuku2D ûk52 ikp̂k2 ik•~u^ u!̂k uku,n̄/2, ~25!

S d

dt
1nuku2D ûk52 ikp̂k2 ik•@~u^ u!̂k2R̂k#

n̄/2<uku,

2n8/2<kj<n8/221, j 51,2,3. ~26!

Equations~25! and ~26! are coupled through the convectiv
term, and in the case of large–small through the model te
A schematic comparison of the multiscale version of L
with the traditional LES formulation is presented in Fig. 1

III. NUMERICAL RESULTS

A. Preliminaries

The code employed for the simulations was written
Wray. Spatial differentiation is by the Fourier spectr

FIG. 1. Comparison of classical LES~a! with multiscale LES~b!.
Downloaded 21 Mar 2004 to 128.8.80.172. Redistribution subject to AIP
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method~see Orszag and Patterson21!. Time advancement is
by a four-step, third-order Runge–Kutta method. All term
are dealiased with the 3/2 rule~see Canutoet al.20!; within
round-off this eliminates aliasing errors for convective term
but the LES models involve higher-order functions~e.g.,
square-root! and so are not dealiased by the 3/2 rule. M
lecular viscous effects are accounted for by an exponen
integrating factor. The methods compared are:

~1! DNS;
~2! Smagorinsky (CS50.1);
~3! dynamic Smagorinsky with sharp cut-off~Germano

et al.,5 Ghosalet al.,7,8 Lilly 22!;
~4! multiscale (CS850.1), small–small, large–small.

For the same resolution, the computational cost of
various LES methods is not substantially different. The le
expensive methods are Smagorinsky and small–small, w
are comparable. Large–small is about 25% more expen
and the dynamic model is over two times more expensiv

For the multiscale models with resolutionn83, n̄
5n8/2. This can be schematically represented in wa

FIG. 2. Cube in wave-vector space representing the spaceV , and sphere

representing the spaceV̄ . The spaceV 85V \V̄ .

FIG. 3. Inviscid case: Total energy,E(k<15) vs time.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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508 Phys. Fluids, Vol. 13, No. 2, February 2001 Hughes et al.
vector space as follows: The spaceV is represented by a
cube, centered at the origin and aligned with the coordin
axes, with edge lengthn821. The large-scale space,V̄ , is
depicted roughly by a sphere with diametern8/2, centered at
the origin~see Fig. 2!. The small-scale space,V 85V \V̄ , is
the cube with the sphere removed. The fraction of functio
associated with the large-scale space is the ratio of the
ume of the sphere to the volume of the cube, v
(p/6) (n8/2)3/(n821)3. We performed multiscale calcula
tions with n8532 andn8564. For these cases, the perce
ages of large-scale functions are only 7.2% and 6.9%,
spectively. Nevertheless, the differences engendered
omitting the eddy viscosity in the large-scale equation w
be seen to be significant.

B. Inviscid case

The calculations depict the early time dynamics of t
incompressible Euler equations. Long time results are
useful because of unphysical pile-up of energy in sm
scales.

The energy spectrum of the initial data is proportional
k4 exp(24k/kp), wherekp54.0 is the location of the pea
value, and the phases are random.

The reference DNS is performed with 643 resolution.
The LES calculations are all performed with 323 resolution.

FIG. 4. Inviscid case: Enstrophy,D(k<15) vs time.

FIG. 5. Inviscid case: Derivative skewness,S(k<15) vs time.
Downloaded 21 Mar 2004 to 128.8.80.172. Redistribution subject to AIP
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The decay of total resolved energy is presented in Fig
The dynamic Smagorinsky and multiscale models track
DNS data well, exhibiting decay;t2, whereas the Smagor
insky results are clearly much too dissipative, exhibiting d
cay ;t.

Enstrophy results are presented in Fig. 4. In contr
with energy, which is dominated by low wave-number co
ponents, enstrophy accentuates the higher wave-numbe
havior. The multiscale models agree very well with the DN
data while the dynamic Smagorinsky and Smagorinsky m
els deviate substantially.

The slopes of the Smagorinsky energy and enstro
results att50.0 are negative, while all other models an
DNS have the correct zero slopes. The zero slopest
50.0 for the dynamic Smagorinsky model can be explain
by the fact that the initial data has random phases wh
produce zeroCS . In the multiscale methods, the eddy vi
cosity is zero fork,8. The peaks of the energy and enstr
phy spectra are atk54 andk56, respectively, and the spec
tra decrease rapidly for larger values ofk. Thus initially there
is very little energy and enstrophy for modes in which t
eddy viscosity is nonzero.

Skewness results are presented in Fig. 5. The produc
of the rate of dissipation of turbulent kinetic energy o

FIG. 6. Viscous case: Taylor microscale Reynolds number,Rl vs time.

FIG. 7. Viscous case: Energy,E(k), at t56.47.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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509Phys. Fluids, Vol. 13, No. 2, February 2001 The multiscale formulation of large eddy simulation
equivalently, the production of enstrophy, is directly relat
to skewness.23 Note, the effect of the model is incorporate
in our definition of skewness, which is computed in the us
spectral way in terms of the energy transfer function,T(k),
which includes the effect of the model~see Monin and
Yaglom,24 p. 240!,

S52
^~]u1 /]x1!3&

^~]u1 /]x1!2&3/2
5

3A30

14

*0
`k2T~k!dk

@*0
`k2E~k!dk#3/2

, ~27!

S~k< k̃!5
3A30

14

*0
k̃k2T~k!dk

@*0
k̃k2E~k!dk#3/2

. ~28!

In ~27!, ^•& denotes spatial integration overV5@0,2p#3.
The Smagorinsky and dynamic Smagorinsky models exh
considerable deviation from the DNS data, whereas the m
tiscale models are again in good agreement.

Although differences between the large–small a
small–small multiscale results for the inviscid case are d
cernible, they are very small.

C. Viscous case

The viscous initial conditions are determined from
truncation of a developed 2563 turbulence field at time 4.16
The time zero initial condition is of the same form as t
inviscid case withkp51.0.

FIG. 8. Viscous case: Total energy,E(k<31) vs time.

FIG. 9. Viscous case: Enstrophy,D(k<31) vs time.
Downloaded 21 Mar 2004 to 128.8.80.172. Redistribution subject to AIP
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The reference DNS is performed at 2563 and the LES
calculations are performed at 643. Figure 6 shows the Taylo
microscale Reynolds number,Rl , over the course of the
simulation.

In Fig. 7, energy spectra are presented att56.47. It is
apparent that the Smagorinsky results are the most diss
tive, significantly underestimating the DNS data fork>10.
The dynamic Smagorinsky model is better, but also unde
timates the DNS data fork>10, before crossing over a
aboutk530. The results of both multiscale models are v
tually identical and are in good agreement with the DNS d
up to k520 and then slightly overestimate them betweenk
520 andk530. Beyondk530, we exceed the resolutio
limit and the LES results are not meaningful.

The decay of total resolved energy is presented in Fig
Both multiscale models coincide with the DNS data throug
out the entire analysis. The Smagorinsky model is the m
dissipative early on but slightly crosses over the DNS d
beyondt58.0. The dynamic Smagorinsky model is also t
dissipative early on but matches the DNS data very w
beyondt58.0.

The decay of resolved enstrophy is presented in Fig
The Smagorinsky model results differ significantly from t
DNS data and are again the least accurate of all the mod
The dynamic Smagorinsky model results exhibit good agr
ment early on, the initial slope coinciding with that of th
DNS data, but then deviate substantially thereafter. The m

FIG. 10. Viscous case: Derivative skewness,S(k<31) vs time.

FIG. 11. Viscous case: Total dissipation vs time.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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tiscale method results are not as accurate as those fo
dynamic Smagorinsky model up tot'5.6, but the trend re-
verses thereafter, and beyondt57.0 the multiscale results
essentially coincide with the DNS data.

Resolved derivative skewness results are presente
Fig. 10. After an initial transient, all the models are in fa
agreement with the DNS data with no particular mod
showing clear superiority.

Total dissipation is presented in Fig. 11. The Smago
sky model is again the least accurate. Initially it exhibits t
much dissipation but crosses over the DNS data att'5.0.
The dynamic Smagorinsky model follows a similar tren
crossing over at aboutt56.0, but it is considerably more
accurate than the Smagorinsky model. The multiscale m
els are clearly the most accurate, showing excellent ag
ment with the DNS data fort>4.6.

Resolved helicity results are presented in Fig. 12. T
models only achieve fair accuracy in approximating the D
helicity data. The multiscale models are the most accu
overall, the dynamic Smagorinsky model is intermediate,
the Smagorinsky model is the least accurate. The sm
small multiscale model is slightly better than the large–sm
model.

As in the inviscid case, only very small differences b
tween the two multiscale versions can be discerned and t
are not significant enough to conclude one version is supe
to the other.

Overall, we conclude that the multiscale models are
most accurate models. The dynamic Smagorinsky mode
intermediate and the Smagorinsky model is the least a
rate.

D. The small-scale Smagorinsky constant

We wish to emphasize that no tuning was performed
obtain an optimal small-scale Smagorinsky constant,CS8 , for
the multiscale models. The valueCS850.1 was selected to b
the same value used for the Smagorinsky model. There i
a priori reason why this is a good choice. It is therefo
interesting to examine this issue. To this end we shall p
form an analysis like that of Lilly2–4 for the case at hand. In
particular, we equate turbulent kinetic energy dissipatione,
with model dissipation. We assume the cut-off wave num
is k8, and the length scaleD5D8, i.e., we assume all the

FIG. 12. Viscous case: Helicity,H(k<31) vs time.
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models employ the same resolution, as was the case in
calculations. As a prelude to the analysis of the multisc
models, let us review the Lilly calculation for the Smagori
sky model, viz.,

e52~CSD8!2u¹suu~¹su•¹su!5~CSD8!2u¹suu3, ~29!

whereu¹suu5(2¹su•¹su)1/2 is evaluated from

1
2u¹suu25E

0

k8
k2E~k!dk ~30!

with

E~k!5ae2/3k25/3 ~31!

in which a is the Kolmogorov constant,E(k) is the spectral
amplitude of kinetic energy, defined as the integral over s
faces of spheres in wave-number space parametrized by
radiusk, and ~31! expresses the assumption that the cut-
wave number,k8, is in the inertial subrange. This leads to

CSD85S 2

3a D 3/4

k821. ~32!

Now we perform similar calculations for the multisca
models. We begin with the case of small–small,

e52~CS8D8!2u¹su8u~¹su8•¹su8!5~CS8D8!2u¹su8u3,
~33!

where

1
2u¹su8u25E

k̄

k8
k2E~k!dk. ~34!

This leads to

CS8D85S 2

3a D 3/4

k̄21@~k8/ k̄!4/321#23/4. ~35!

For the case of large–small, we have

e52~CS8D8!2u¹sūu~¹su8•¹su8!5~CS8D8!2u¹sūuu¹su8u2

~36!

and thus

CS8D85S 2

3a D 3/4

k̄21@~k8/ k̄!4/321#21/2. ~37!

The ratioCS8/CS is plotted vsk8/ k̄ in Fig. 13 for the two
multiscale models. One use for these results is that if one
determined a ‘‘good’’ value of the Smagorinsky consta
CS , then good values ofCs8 follow. Viewing CS as given,
andk8 fixed,CS8 becomes a function of the choice ofk̄. Note
the obvious fact thatCS8/CS.1, which can also be gleane
from Fig. 13. Ask̄→0, CS8/CS→1 for small–small, whereas
CS8/CS5O((k8/ k̄)1/3) for large–small.

In order to assess the value ofCS8 chosen for the simu-
lations, we need to determinek8/ k̄. In the viscous casek̄
515. Keeping in mind thatk8 is the radius of a sphere in th
Lilly analysis, we shall calculatek8 to be the radius of the
sphere having volume 633 ~see Fig. 14!. Thus, 4

3p(k8)3
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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511Phys. Fluids, Vol. 13, No. 2, February 2001 The multiscale formulation of large eddy simulation
5633 and sok8/ k̄52.60. For this value, Fig. 13 sugges
that the desired ratios of the Smagorinsky constants
given by

CS8/CS5H 1.28 small–small

1.62 large–small.
~38!

We also remark that experience with the code employed s
gested thatCS50.1 was a ‘‘good’’ value for the Smagorin
sky model, although for the particular case studied it appe
to yield results that are somewhat too dissipative.

In order to see if the trend suggested by these resul
correct we performed a sweep ofCS8 for the small–small
case. Figure 15 depicts the total dissipation forCS850 ~no
model!, 0.05, 0.1~the value used for the simulations prev
ously presented!, and 0.2. We note that the result forCS8
50.1 was presented already in Fig. 11. However, in Fig.
the scale of the plot is such that small deviations are m

FIG. 13. CS8/CS vs k8/ k̄ for the multiscale models.

FIG. 14. Cube and volume-equivalent sphere in wave-vector space
Downloaded 21 Mar 2004 to 128.8.80.172. Redistribution subject to AIP
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clearly visible than in Fig. 11. It can be seen that the b
value for CS8 would lie between 0.1 and 0.2, but closer
0.1. We conclude that the value 0.1 was not a bad choice,
also not the best choice. Consequently, the results obta
in the simulations may be viewed as representative ra
than optimized in favor of the multiscale methods.

IV. CONCLUSIONS

We have tested the variational multiscale method on
mogeneous, isotropic flows. Comparisons have been m
with the standard Smagorinsky model, the dynamic Sma
rinsky model, and DNS data. Overall, the multiscale metho
are in better agreement with DNS data than both the Sma
rinsky and dynamic Smagorinsky models, despite the f
that we used unoptimized, constant-coefficient eddy visc
ties in the multiscale methods.

We attribute the good results obtained to basic featu
of the variational multiscale method, namely, modeling
confined to the equations governing small scales, where t
seems to be less sensitivity to the particular form of the m
eling, as evidenced by the quality of the results obtained w
a Smagorinsky-type model. Nevertheless, it is still somew
remarkable that the multiscale results are as good as the
when one realizes that the main difference between the m
tiscale method used and the standard Smagorinsky mod
simply removal of the eddy viscosity from a small perce
age of the lowest resolved modes.
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