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The multiscale formulation of large eddy simulation: Decay of homogeneous
isotropic turbulence
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The variational multiscale method is applied to the large eddy simulétiBs) of homogeneous,
isotropic flows and compared with the classical Smagorinsky model, the dynamic Smagorinsky
model, and direct numerical simulatigbNS) data. Overall, the multiscale method is in better
agreement with the DNS data than both the Smagorinsky model and the dynamic Smagorinsky
model. The results are somewhat remarkable when one realizes that the multiscale method is almost
identical to the Smagorinsky modéhe least accurate modgléxcept for removal of the eddy
viscosity from a very small percentage of the lowest modes20®1 American Institute of Physics.
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I. INTRODUCTION devoted to further improvement. For example, we may men-
tion “mixed-models™ and “scale-similar models }°

Large eddy simulatioLES) has proven to be a valuable A new philosophy of LES was espoused in Hughes
technique for the calculation of turbulent flows. The philoso-et al,* where it was argued that many shortcomings of
phy of LES consists of resolving large-scale flow featuresSmagorinsky-based approaches were associated with their
and modeling subgrid-scale stresses, which represent the efiability to successfully differentiate between large and small
fect of missing, unresolved scales on resolved scales withiacales. To this end, a multiscale method was adopted to per-
the filtered Navier—Stokes equations. The Smagorinsky eddfprm scale-separatioab initio. The idea of using multiscale
viscosity model has played a dominant role in LES over the approaches in turbulence is not new. Temam and his col-
years. The classical Smagorinsky model entails definition ofeagues have been pursuing this strategy for a number of
a constant, a length scale and a time scalgriori analyses Yyears(see Dubois, Jauberteau, and Tenat). Our work
to determine the constant and length scale have been pdvegan in Hughes and Hughes and Stew#twhere the ini-
formed by Lilly.2~* Lilly employs the Kolmogorov energy tial focus was more on explaining and refining certain
spectrum and assumptions relating mesh scales to the cut-of§ood” numerical methods than on turbulence modeling.
wave number of the discretization. Experience has revealedihe inextricable relationship between modeling and good
that the constant determined by this process is not suitableumerical methods was emphasized in Hugeeal’” The
for all flows. In addition, many other shortcomings of the Mmain tenets of our approach are summarized as follows:

Smagorinsky model have been identified, such as incorregf)  variational projection is used to differentiate scales.

asymptotics in wall-bounded flows, inability to accommo- (jiy A priori scale separation is preferred to attempta at
date backscatter, excessive dissipation in the presence of posteriori scale separation. This enables surgical

large coherent structures, incorrect growth rate of perturba- modeling of unresolved, high wave-number phenom-

. . e 5 ! i

tions in transition, etc.(see, e.g., Germanetal’ and ena rather than all wave numbers, as in contemporary
Piomellf). These have prompted numerous efforts to im- LES.

prove upon the Smagorinsky model. A major advance t0okjii)  Modeling is confined to the small-scale equation in

place with the development of the dynamic Smagorinsky preference to modeling within the large-scale equa-
modef”® in which the Smagorinsky constant is replaced tion.

with a function of space and time which is self-adaptively

determined along with the flow solution. The dynamic Sma- It can be argued that, even with relatively crude model-

gorinsky model has led to improved results in almost alling, such as using a constant-coefficient Smagorinsky model
cases(see Piomelfi for a recent review and assessment ofin the small-scale equation, many of the shortcomings of the
the state-of-the-art Nevertheless, many efforts have beentraditional LES models are obviated. These points were
made in Hugheet al!! but no numerical results were pre-
dAuthor to whom correspondence should be addressed. Telephong':em?q supportmg them.’ .In t.hIS work We take a first step in
650-723-2040; Fax: 650-723-1778; electronic mail: hughes@amProviding numerical verification of our ideas. Here, we ex-

sun2.stanford.edu amine homogeneous, isotropic flows using a spectral
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method. The variational multiscale method has a transparentheree; is the unit Cartesian basis vector in thedirection.

interpretation in the context of spectral methods. The Fourier series representation of the solution is
We note in passing that our original presentation of the
variational multiscale methods for LE®Ref. 11 was con- u(xlt)zz U (t) e, (6)
K

cerned with physical, rather than spectral, space. Therein we

described variational/finite element formulations using hier-

archical bases and “bubbles,” which are useful techniques  p(x,t)=>, p.(t)e'k*, )
for developing multiscale procedures. Jartemas imple- K

mented the methods with success in a stabilized finite elevvherek:(kl k,,ks) is the wave-number vector ar&li and

ment code employing hierarchical bases. We believe simiIaFr)k are the Fourier coefficients of andp, respectively. The
ideas can also be developed for finite difference and finitg- \rier versions of1) and (2) are, respectively

volume codes by exploiting technology used in multigrid

solvers, in particular, agglomeration operators which can be d 2|~

used to extract large-scale subspaces. This approach is being | dt + vlk|* u

pursued by Farhdf It could also be used in finite element .

codes. ik-ue=0. 9
The remainder of the paper is summarized as follows: inrpe Foyrier—Galerkin approximation truncates the su@js,

Sec. Il we describe the spectral variational muItiscaIeand (7), such that-n/2<k;<+n/2—1, j=1,2,3. This cor-

method. In Sec. lll, we present numerical results for a ho'responds to a direct numerical simulati@Ns) with a grid

mogeneous, isotropic Euler flow, and for the decay of homoy: 13 .alls. Note that. modes for whick = —n/2 i
- ’ ] ’

geneous, isotropic turbulence with initial Taylor microscale _ 4 5 3, are omitted for reasons concerning commonly used
Reynolds number of about 90. The methods compared are-tg ('see discussion on p. 78 of Canwibal®). In prac-

the standard Smagorinsky model, the dynamic Smagorinsky.e e does not use the pressure. The velocity is simply
model, and two variants of the multiscale method. All res““sprojected on its divergence-free part employisy

are benchmarked against direct numerical simulatioNS)

data. The multiscale results are i_n better agreemgnt with thg Smagorinsky model

DNS data than both the Smagorinsky and dynamic Smagor- _ o .
insky models. Furthermore, we argue that the multiscale re- As @ point of reference for describing the multiscale
sults are not optimized in any way. Conclusions are premodels, we will first present the Smagorinsky model. In this

= —ikp—ik-(UDU), ®

sented in Sec. IV. case the subgrid-scale stress is modeled by
T=2v;Vu, (10
Il. THEORY
where

The variational multiscale method for LES was intro- _ Y
duced by Hughest al!! Here we will provide a brief de- pr=(CsB)% V2ul (1)
scription specialized for the case of a spectral method. For e which Cg is the so-called Smagorinsky constaat,is a
compz)(r)ehensive presentation of spectral methods, see Canuangth scaleyV°u denotes the symmetric gradient, viz.,
et al. 1

We consider the incompressible, isothermal, Navier— Veu=3(Vu+ (V)" (12)
Stokes equations on the spatial dom&=[0,27]°CR®.  and
We assume periodic boundary conditions in all three spatial

S| — Sy 1. S ) 1/2
directions. In this case we have |Voul=(2Veu- Vou) ™=, (13
Ju The length scal@ is taken to be the mesh size. The modeled
—; HV (ugu)+Vp=vAu in Q, (1)  counterpart of8) is
d - - — .
V.-u=0 in Q, (2) (aJrv|k|2)uk=—ikpk—ik-[(u®u)k—Tk]. (14)
where u is the velocity vectorp is the pressurey is the B. Multiscale formulation
kinematic viscosityQ=Q X]0,T[, T defines the time inter- In the multiscale formulation we decompose the solution

val of interest, andl, is the given initial velocity, assumed into large-scale and small-scale components, viz.,
divergence free. Let the boundary@fbe denoted by(). It —
is comprised of six faced};(0), I'j(27), j=1, 2, 3, where u=u+u’, (15

Tj(c)={xe dQ|x;=c}. (4) p=p+p’, (16)
The periodic boundary conditions may be expressed as  where
uly,t)y=u(x,t), xel’;(0),

(5) u(x,t)= 2 O)e, (17
y=x+2mgel'j(2m), te]0,T[, [kl <n/2
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FIG. 1. Comparison of classical LE@) with multiscale LES(b).

PO = 2 pbe*, (18)
|k|<n/2
’ — - ik-x
u'(xt) |k|§F/Z uk()e™, (19) FIG. 2. Cube in wave-vector space representing the sgacend sphere
representing the spac%'. The spaceZ” = 7\ 7.
px= 2 pbe*, (20
[k|=n/2

o method(see Orszag and Patterédn Time advancement is
[k|= (ki +k5+k3)™, (21 by a four-step, third-order Runge—Kutta method. All terms
are dealiased with the 3/2 rulsee Canuteet al?%); within
round-off this eliminates aliasing errors for convective terms,
but the LES models involve higher-order functiofs.g.,
square-rogtand so are not dealiased by the 3/2 rule. Mo-
lecular viscous effects are accounted for by an exponential
R=2v;V’, (22)  integrating factor. The methods compared are:

and n<n’. The sums in(19) and (20) are truncated by
—n'l2skjs=n'/2—1,j=1, 2, 3, wheren’ defines the LES
grid.

Modeling is confined to the small scales, i.e., let

where there are two choices under consideratiorvfar (1) DNS;
h=(CLA")2| V3| (23) 2 Smagqrinsky (35:_0.1); _
(3) dynamic Smagorinsky with sharp cut-ofiGermano
and et al,® Ghosalet al,”® Lilly ??);
vi=(CLA")? V5. (24) (4) multiscale Cg=0.1), small-small, large—small.

We refer to(23) as “small-small” and to(24) as “large— For the same resolution, the computational cost of the
small.” The length scald’ is taken to be the mesh size. The various LES methods is not substantially different. The least
equations in Fourier space are expensive methods are Smagorinsky and small—-small, which
are comparable. Large—small is about 25% more expensive
and the dynamic model is over two times more expensive.
For the multiscale models with resolution’3, n
=n’'/2. This can be schematically represented in wave-

d . . S _
er v|k|2)uk= —ikpy—ik-(u®u), |k|<n/2, (25)

d - - — .
a+V|k|2) Uk: —Ikpk—lk[(u®u)k—Rk]

n/2<|k|, 150

—n'f2<k=n'/2-1,j=1,23. (26)

Equations(25) and(26) are coupled through the convective u 14
term, and in the case of large—small through the model term g

A schematic comparison of the multiscale version of LES E:
with the traditional LES formulation is presented in Fig. 1. & 1.8
N _
IIl. NUMERICAL RESULTS 32 Smagorinsky 3L arge-Small
A. Preliminaries 147 000 002 004 006 008 010 012 014 016 0.I8

The code employed for the simulations was written by time
Wray. Spatial differentiation is by the Fourier spectral FIG. 3. Inviscid case: Total energi(k<15) vs time.
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FIG. 4. Inviscid case: Enstrophfp(k<15) vs time.
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4
vector space as follows: The spagé is represented by a e
cube, centered at the origin and aligned with the coordinateFIG. 6. Viscous case: Taylor microscale Reynolds numBgrys time.
axes, with edge length’ — 1. The large-scale spacg;, is
deplct.e(_d roughly by a sphere with d|ama“éfgv cen‘tefd_ at The decay of total resolved energy is presented in Fig. 3.
the origin(see Fig. 2 The small-scale space” =7\7"is  The dynamic Smagorinsky and multiscale models track the
the cube with the sphere removed. The fraction of functiongyns gata well, exhibiting decay-t2, whereas the Smagor-
associated with the large-scale space is the ratio of the volsky results are clearly much too dissipative, exhibiting de-
ume of the sphere to the volume of the cube, ViZ.,cay ~t.
(/6) (r_"/z)s/(”'_l)g- We performed multiscale calcula- Enstrophy results are presented in Fig. 4. In contrast
tions withn” =32 andn’=64. For these cases, the percent-yith energy, which is dominated by low wave-number com-
ages of large-scale functions are only 7.2% and 6.9%, r€5onents, enstrophy accentuates the higher wave-number be-
spectively. Nevertheless, the differences engendered Qy,yior. The multiscale models agree very well with the DNS
omitting the eddy viscosity in the large-scale equation will y5¢5 while the dynamic Smagorinsky and Smagorinsky mod-

be seen to be significant. els deviate substantially.
o The slopes of the Smagorinsky energy and enstrophy
B. Inviscid case results att=0.0 are negative, while all other models and

The calculations depict the early time dynamics of theDNS have the correct zero slopes. The zero slopes at
incompressible Euler equations. Long time results are not 0.0 for the dynamic Smagorinsky model can be explained
useful because of unphysical pile-up of energy in smallby the fact that the initial data has random phases which
scales. produce zercCs. In the multiscale methods, the eddy vis-

The energy spectrum of the initial data is proportional tocosity is zero fork<8. The peaks of the energy and enstro-
k* exp(—4k/k,), wherek,=4.0 is the location of the peak Phy spectra are &=4 andk=6, respectively, and the spec-
value, and the phases are random. tra decrease rapidly for larger valueskofThus initially there

The reference DNS is performed with 64esolution. is very little energy and enstrophy for modes in which the

The LES calculations are all performed with®32solution.  eddy viscosity is nonzero.
Skewness results are presented in Fig. 5. The production

of the rate of dissipation of turbulent kinetic energy or,

030 32°small-Small
0.2517 10-]
@ 0.207 5]
o4 10
E 0.15 s 64° Large-Small
© 010 107 64° Small-Small
2 = 64° Dynamic
s 0.057 - 3 i
E sy 10 64° Smagorinsky.
K 000p” p s o
0051 10
-0.10 T T T T T T T 10'(’ . : )
0.000.02 0.04 0.06 0.08 0.10 012 014 0160.18 10 10" 102
time k
FIG. 5. Inviscid case: Derivative skewne§gk=<15) vs time. FIG. 7. Viscous case: Energi(k), att=6.47.
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0.05
time

FIG. 8. Viscous case: Total enerdgy(k<31) vs time.

equivalently, the production of enstrophy, is directly related
to skewnes$® Note, the effect of the model is incorporated

spectral way in terms of the energy transfer functio(k),
which includes the effect of the modésee Monin and

Yaglom?* p. 240,

~ ((augloxg)®) 330 [5 2T(k)dk
O ((aulax)®¥? 14 [[EkPE(K)dK]P?

3430 [Xk2T(K)dk

S(k<k)= - .
14 [ [§k?E(k)dk]®?2

In (27), (-) denotes spatial integration ovél=[0,27]3.

(27)

(28)

Derivative skewness

simulation.

The Smagorinsky and dynamic Smagorinsky models exhibit
considerable deviation from the DNS data, whereas the mulg i, myItiscale models coincide with the DNS data through-
out the entire analysis. The Smagorinsky model is the most

tiscale models are again in good agreement.

Although differences between the large—small

The multiscale formulation of large eddy simulation 509

0.057

64°Small-Small e

64°Dynamic // ____________
\.-/f‘“f’— 256°DNS
G

0.00

time

FIG. 10. Viscous case: Derivative skewneSg=<31) vs time.

The reference DNS is performed at 358nd the LES
in our definition of skewness, which is computed in the usuatalculations are performed at %4 igure 6 shows the Taylor
microscale Reynolds numbeR, , over the course of the

In Fig. 7, energy spectra are presented=a6.47. It is
apparent that the Smagorinsky results are the most dissipa-
tive, significantly underestimating the DNS data fce 10.

The dynamic Smagorinsky model is better, but also underes-
timates the DNS data fok=10, before crossing over at
aboutk=30. The results of both multiscale models are vir-
tually identical and are in good agreement with the DNS data
up to k=20 and then slightly overestimate them betwéen
=20 andk=30. Beyondk=30, we exceed the resolution
limit and the LES results are not meaningful.

The decay of total resolved energy is presented in Fig. 8.

andjjissipative early on but slightly crosses over the DNS data

small-small multiscale results for the inviscid case are d'sbeyondt=8.0. The dynamic Smagorinsky model is also too
dissipative early on but matches the DNS data very well

cernible, they are very small.

C. Viscous case

inviscid case witrkp= 1.0.

70
601 VﬁfLarg&SmaH
0T AN 256°DNS
2, WO
§' 40 64° Small-Small
& 30 \/
201
64°Dynamic - I
101 TSI e,
64’Smagorinsky e
0 r T T T T
4 5 6 7 8 9 10 11 12 13 14

FIG. 9. Viscous case: Enstrophp(k<31) vs time.

beyondt=8.0.

Total dissipation

The decay of resolved enstrophy is presented in Fig. 9.
The viscous initial conditions are determined from aThe Smagorinsky model results differ significantly from the
truncation of a developed 2&%@urbulence field at time 4.16. DNS data and are again the least accurate of all the models.
The time zero initial condition is of the same form as the The dynamic Smagorinsky model results exhibit good agree-
ment early on, the initial slope coinciding with that of the
DNS data, but then deviate substantially thereafter. The mul-

0.18
0.16
0.147
0.121
0.101
0.08
0.067
0.04+
0.02-

ﬁ 64:’Smagorinsky
\\ 64® Dynamic
Nl 256°DNS

64°Small-Small

64% Large-Small ‘

0.00
4

FIG. 11. Viscous case: Total dissipation vs time.
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-0.015 ' models employ the same resolution, as was the case in our
-0.0207 64°Smagorinsky calculations. As a prelude to the analysis of the multiscale
ﬁ'gigf \ models, let us review the Lilly calculation for the Smagorin-
0035 sky model, viz.,
> 0.040 < _ 2 _ 2 3
3 0045 4 ‘<&643Small-8mall €=2(CsA")?|VEu[(Vou- Vou) = (CsA )% VU, (29)
g 7 N3 .
T -0.050 .~ ~e4’Large-Small where|Veu| = (2V°u- Vsu) Y2 is evaluated from
-0.055 s \
-0.060'1 64°Dynamic 1 K’
] 31Vsul?= |~ k%*E(k)dk 30
-0.065 256°DNS 2l Veul . (k) (30
0.070 . ‘ : : : : : . ‘
4 s 6 7 8 9 10 1t 12 13 14 )
time with
_  _213,-5/3
FIG. 12. Viscous case: Helicityd (k<31) vs time. E(k)=ae * (31

in which « is the Kolmogorov constanE (k) is the spectral
) amplitude of kinetic energy, defined as the integral over sur-
tiscale method results are not as accurate as those for ﬂ?&ces of spheres in wave-number space parametrized by the

dynamic Smagorinsky model up te-5.6, but the trend re- o ;s\ and (31) expresses the assumption that the cut-off
verses thereafter, and beyoihd 7.0 the multiscale results wave numberk’, is in the inertial subrange. This leads to

essentially coincide with the DNS data.
Resolved derivative skewness results are presented in ) 2\% 1
Fig. 10. After an initial transient, all the models are in fair S :(5) K™% (32
agreement with the DNS data with no particular model
showing clear superiority. Now we perform similar calculations for the multiscale
Total dissipation is presented in Fig. 11. The Smagorin-models. We begin with the case of small-small,
sky model is again the least accurate. Initially it exhibits too _ A IN21DS TS TS, s T A 1N2]s 113
much dissipation but crosses over the DNS dat&~85.0. €=2(CsA ") VAU'[(Vu'- V') = (CsA )| Vour'| ’(33)
The dynamic Smagorinsky model follows a similar trend,
crossing over at about=6.0, but it is considerably more where
accurate than the Smagorinsky model. The multiscale mod-
els are_clearly the most accurate, showing excellent agree- Lysy’|2= J;k,sz(k)dk. (34)
ment with the DNS data for=4.6. k
Resolved he_licity r_esults are presented_ in I_:ig. 12. Thel-his leads to
models only achieve fair accuracy in approximating the DNS
helicity data. The multiscale models are the most accurate
overall, the dynamic Smagorinsky model is intermediate, and
the Smagorinsky model is the least accurate. The small—
small multiscale model is slightly better than the large—small ~ For the case of large—small, we have
model. _ A AAVETTAvETAR v T A T A AvENIRvE U
As in the inviscid case, only very small differences be- €= 2(CsA") [VEu[(Vou"- Vou") = (CA )| Veul [ Veu'|
tween the two multiscale versions can be discerned and these (36)
are not significant enough to conclude one version is superigind thus
to the other. i
Overall, we conclude that the multiscale models are the CIA :(i) ?_1[“(,/?)4,3_ 1112 37)
most accurate models. The dynamic Smagorinsky model is S 3a '
intermediate and the Smagorinsky model is the least accu-

2 3/4_ -
CLA’ :(5) K (k'[k)*3—1]73%4 (35)

rate. The ratioC4/Cg is plotted vsk’/k in Fig. 13 for the two
multiscale models. One use for these results is that if one has
D. The small-scale Smagorinsky constant determined a “good” value of the Smagorinsky constant,

. . ) Cs, then good values o€ follow. Viewing Cg as given,
We wish to emphasize that no tuning was performed to —

. . . andk’ fixed, Cg becomes a function of the choicelaf Note

obtain an optimal small-scale Smagorinsky constagt, for : , .
. = the obvious fact tha€C¢/Cs>1, which can also be gleaned

the multiscale models. The val@=0.1 was selected to be . — ,
the same value used for the Smagorinsky model. There is nfé?m Fig. 13. Aikl/_’o’ Cg/Cs—1 for small-small, whereas
a priori reason why this is a good choice. It is therefore C&/Cs=O0((k'/k)*?) for large—small. .
interesting to examine this issue. To this end we shall per- In order to assess the value ©f chosen for the simu-
form an analysis like that of Lil§* for the case at hand. In lations, we need to determiri€/k. In the viscous cas&
particular, we equate turbulent kinetic energy dissipatign, =15. Keeping in mind that’ is the radius of a sphere in the
with model dissipation. We assume the cut-off wave numbet.illy analysis, we shall calculat&’ to be the radius of the
is k', and the length scalA=A’, i.e., we assume all the sphere having volume 83(see Fig. 1% Thus, 3m(k’)3
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T T T \
0.141

] 0121 84 =0
64%Cy = 0.05

64°Cy = 0.1

Total dissipation
el
[end
*°

256°DN
: (¥/F) [(k’/l})m - 1] 7 Small-Small 0.041 \
WL : - 64°cy =0.2
0.02 . . . : : g
: 45 50 55 60 65 70 75 80 85
.l : 1 time

o ) ) L ) ) FIG. 15. Viscous case: Total dissipation for different value<Cgf The
1 12 14 16 24 18 2 22 2.4 26 28 3 multiscale model used was small—small.
Kk

FIG. 13. C¢/Cs vs k'/k for the multiscale models. clearly visible than in Fig. 11. It can be seen that the best
value for Cg would lie between 0.1 and 0.2, but closer to
_ 0.1. We conclude that the value 0.1 was not a bad choice, but
=63° and sok'/k=2.60. For this value, Fig. 13 suggests also not the best choice. Consequently, the results obtained
that the desired ratios of the Smagorinsky constants arg the simulations may be viewed as representative rather
given by than optimized in favor of the multiscale methods.

1.28 small-small

CL/Cs= (38)  IV. CONCLUSIONS

1.62 large—small.
. . We have tested the variational multiscale method on ho-
We also remark that experience with the code employed sug- . . .
ogeneous, isotropic flows. Comparisons have been made

gested thaCs=0.1 was a “‘good” value for the Smagorin- . . . )
sky model, although for the particular case studied it appear\:'s\”th the standard Smagorinsky model, the dynamic Smago

. o rinsky model, and DNS data. Overall, the multiscale methods

to yield results that are somewhat too dissipative. : :
. are in better agreement with DNS data than both the Smago-
In order to see if the trend suggested by these results IS . . .
; rinsky and dynamic Smagorinsky models, despite the fact
correct we performed a sweep @fg for the small-small - L . .
. . ST that we used unoptimized, constant-coefficient eddy viscosi-

case. Figure 15 depicts the total dissipation @j=0 (no

mode), 0.05, 0.1(the value used for the simulations previ- tleswethait?bﬂﬁﬁf n(;it(;]?giﬁlts obtained to basic features
ously presented and 0.2. We note that the result farg 9

=0.1 was presented already in Fig. 11. However, in Fig. 15Of the variational mqltlscale me.thod, namely, modeling is
confined to the equations governing small scales, where there

the scale of the plot is such that small deviations are morée e .
Seems to be less sensitivity to the particular form of the mod-
eling, as evidenced by the quality of the results obtained with
a Smagorinsky-type model. Nevertheless, it is still somewhat
remarkable that the multiscale results are as good as they are
when one realizes that the main difference between the mul-
tiscale method used and the standard Smagorinsky model is
simply removal of the eddy viscosity from a small percent-

age of the lowest resolved modes.
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